Let’s learn about list comprehensions! You are given three integers x,y and z representing the dimensions of a cuboid along with an integer n. Print a list of all possible coordinates given by (i,j,k) on a 3D grid where the sum of i+j+k is not equal to n. Here, 0 ≤ i ≤ x; 0 ≤ j ≤ y; 0 ≤ k ≤ z . Please use list comprehensions rather than multiple loops, as a learning exercise.
Example
x = 1
y = 1
z = 2
n = 3
All permutations of [i, j, k] are:
[[0, 0, 0], [0, 0, 1], [0, 0, 2], [0, 1, 0], [0, 1, 1], [0, 1, 2], [1, 0, 0], [1, 0, 1], [1, 0, 2], [1, 1, 0], [1, 1, 1], [1, 1, 2]].
Print an array of the elements that do not sum to n = 3.
[[0, 0, 0], [0, 0, 1], [0, 0, 2], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 2]]
Input Format
Four integers x, y, z and n, each on a separate line.
Constraints
Print the list in lexicographic increasing order.
Sample Input 0
1
1
1
2
Sample Output 0
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 1, 1]]
Explanation 0
Each variable x, y and x will have values of 0 or 1. All permutations of lists in the form [i, j, k] = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]].
Remove all arrays that sum to n = 2 to leave only the valid permutations.
Sample Input
2
2
2
2
Sample Output 1
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 2], [0, 2, 1], [0, 2, 2], [1, 0, 0], [1, 0, 2], [1, 1, 1], [1, 1, 2], [1, 2, 0], [1, 2, 1], [1, 2, 2], [2, 0, 1], [2, 0, 2], [2, 1, 0], [2, 1, 1], [2, 1, 2], [2, 2, 0], [2, 2, 1], [2, 2, 2]]
Solution Implementation
# ========================
# Information
# ========================
# Direct Link: https://www.hackerrank.com/challenges/list-comprehensions/problem
# Difficulty: Easy
# Max Score: 10
# Language: Python
# ========================
# Solution
# ========================
X = int(input())
Y = int(input())
Z = int(input())
N = int(input())
RESULT = []
for a in range(0, X + 1):
for b in range(0, Y + 1):
for c in range(0, Z + 1):
if (a + b + c) != N:
RESULT.append([a, b, c])
print(RESULT)