Polar Coordinates

Polar coordinates are an alternative way of representing Cartesian coordinates or Complex Numbers.

A complex number  z

z = x + yj

is completely determined by its real part x and imaginary part y.
Here, j is the imaginary unit.

A polar coordinate (r, φ) 

is completely determined by modulus r and phase angle φ .

If we convert complex number  to its polar coordinate, we find:
r : Distance from ( z ) to origin, i.e., $$ \sqrt{x^2 + y^2} $$


φ : Counter clockwise angle measured from the positive x-axis to the line segment that joins z to the origin.

Python’s cmath module provides access to the mathematical functions for complex numbers.

cmath.phase
This tool returns the phase of complex number z (also known as the argument of z).

>>> phase(complex(-1.0, 0.0))
3.1415926535897931

abs
This tool returns the modulus (absolute value) of complex number z.

>>> abs(complex(-1.0, 0.0))
1.0

Task
You are given a complex z. Your task is to convert it to polar coordinates.

Input Format

A single line containing the complex number z. Note: complex() function can be used in python to convert the input as a complex number.

Constraints

Given number is a valid complex number

Output Format

Output two lines:
The first line should contain the value of r.
The second line should contain the value of φ.

Sample Input

  1+2j

Sample Output

 2.23606797749979 
 1.1071487177940904

Note: The output should be correct up to 3 decimal places.

Solution Implementation


# ========================
#       Information
# ========================

# Direct Link: https://www.hackerrank.com/challenges/polar-coordinates/problem
# Difficulty: Easy
# Max Score: 10
# Language: Python

# ========================
#         Solution
# ========================

from cmath import polar

z = complex(input())

print(*polar(z), sep='\n')
Copied!

Leave a Reply

Your email address will not be published. Required fields are marked *