Find Angle MBC

  

ABC is a right triangle, 90 at B.
Therefore, (\angle \left(ABC\right)=90\degree ).

Point M is the midpoint of hypotenuse AC.

You are given the lengths AB and BC.
Your task is to find (\angle \left(MBC\right)) (angle θ\degree , as shown in the figure) in degrees.

Input Format

The first line contains the length of side AB.
The second line contains the length of side BC.

Constraints

  • 0 < AB 100
  • 0 < BC ≤ 100
  • Lengths AB and BC are natural numbers.

Output Format

Output  (\angle \left(MBC\right)) in degrees.

Note: Round the angle to the nearest integer.

Examples:
If angle is 56.5000001°, then output 57°.
If angle is 56.5000000°, then output 57°.
If angle is 56.4999999°, then output 56°.

0\degree < θ\degree < 90\degree

Sample Input

10
10

Sample Output

45°

Solution Implementation


from math import sqrt
from math import acos
from math import degrees

AB = int(input())
BC = int(input())

AC = sqrt(AB ** 2 + BC ** 2)

BM = AC / 2

angle = acos(BC / (2*BM))

print("{}{}".format(round(degrees(angle)), chr(176)))
Copied!

Leave a Reply

Your email address will not be published. Required fields are marked *