ABC is a right triangle, 90 at B.
Therefore, (\angle \left(ABC\right)=90\degree ).
Point M is the midpoint of hypotenuse AC.
You are given the lengths AB and BC.
Your task is to find (\angle \left(MBC\right)) (angle θ\degree , as shown in the figure) in degrees.
Input Format
The first line contains the length of side AB.
The second line contains the length of side BC.
Constraints
- 0 < AB ≤ 100
- 0 < BC ≤ 100
- Lengths AB and BC are natural numbers.
Output Format
Output (\angle \left(MBC\right)) in degrees.
Note: Round the angle to the nearest integer.
Examples:
If angle is 56.5000001°, then output 57°.
If angle is 56.5000000°, then output 57°.
If angle is 56.4999999°, then output 56°.
0\degree < θ\degree < 90\degree
Sample Input
10
10
Sample Output
45°
Solution Implementation
from math import sqrt
from math import acos
from math import degrees
AB = int(input())
BC = int(input())
AC = sqrt(AB ** 2 + BC ** 2)
BM = AC / 2
angle = acos(BC / (2*BM))
print("{}{}".format(round(degrees(angle)), chr(176)))
Copied!